3.2.40 \(\int (a+b \sin ^2(e+f x))^{3/2} \, dx\) [140]

3.2.40.1 Optimal result
3.2.40.2 Mathematica [A] (verified)
3.2.40.3 Rubi [A] (verified)
3.2.40.4 Maple [A] (verified)
3.2.40.5 Fricas [F]
3.2.40.6 Sympy [F]
3.2.40.7 Maxima [F]
3.2.40.8 Giac [F]
3.2.40.9 Mupad [F(-1)]

3.2.40.1 Optimal result

Integrand size = 16, antiderivative size = 154 \[ \int \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=-\frac {b \cos (e+f x) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}+\frac {2 (2 a+b) E\left (e+f x\left |-\frac {b}{a}\right .\right ) \sqrt {a+b \sin ^2(e+f x)}}{3 f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}-\frac {a (a+b) \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right ) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{3 f \sqrt {a+b \sin ^2(e+f x)}} \]

output
-1/3*b*cos(f*x+e)*sin(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2)/f+2/3*(2*a+b)*(cos(f 
*x+e)^2)^(1/2)/cos(f*x+e)*EllipticE(sin(f*x+e),(-b/a)^(1/2))*(a+b*sin(f*x+ 
e)^2)^(1/2)/f/(1+b*sin(f*x+e)^2/a)^(1/2)-1/3*a*(a+b)*(cos(f*x+e)^2)^(1/2)/ 
cos(f*x+e)*EllipticF(sin(f*x+e),(-b/a)^(1/2))*(1+b*sin(f*x+e)^2/a)^(1/2)/f 
/(a+b*sin(f*x+e)^2)^(1/2)
 
3.2.40.2 Mathematica [A] (verified)

Time = 0.56 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.01 \[ \int \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=\frac {4 \sqrt {2} a (2 a+b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )-2 \sqrt {2} a (a+b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right )+b (-2 a-b+b \cos (2 (e+f x))) \sin (2 (e+f x))}{6 \sqrt {2} f \sqrt {2 a+b-b \cos (2 (e+f x))}} \]

input
Integrate[(a + b*Sin[e + f*x]^2)^(3/2),x]
 
output
(4*Sqrt[2]*a*(2*a + b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e 
+ f*x, -(b/a)] - 2*Sqrt[2]*a*(a + b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a 
]*EllipticF[e + f*x, -(b/a)] + b*(-2*a - b + b*Cos[2*(e + f*x)])*Sin[2*(e 
+ f*x)])/(6*Sqrt[2]*f*Sqrt[2*a + b - b*Cos[2*(e + f*x)]])
 
3.2.40.3 Rubi [A] (verified)

Time = 0.78 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.01, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.688, Rules used = {3042, 3659, 3042, 3651, 3042, 3657, 3042, 3656, 3662, 3042, 3661}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (a+b \sin (e+f x)^2\right )^{3/2}dx\)

\(\Big \downarrow \) 3659

\(\displaystyle \frac {1}{3} \int \frac {2 b (2 a+b) \sin ^2(e+f x)+a (3 a+b)}{\sqrt {b \sin ^2(e+f x)+a}}dx-\frac {b \sin (e+f x) \cos (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {2 b (2 a+b) \sin (e+f x)^2+a (3 a+b)}{\sqrt {b \sin (e+f x)^2+a}}dx-\frac {b \sin (e+f x) \cos (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}\)

\(\Big \downarrow \) 3651

\(\displaystyle \frac {1}{3} \left (2 (2 a+b) \int \sqrt {b \sin ^2(e+f x)+a}dx-a (a+b) \int \frac {1}{\sqrt {b \sin ^2(e+f x)+a}}dx\right )-\frac {b \sin (e+f x) \cos (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (2 (2 a+b) \int \sqrt {b \sin (e+f x)^2+a}dx-a (a+b) \int \frac {1}{\sqrt {b \sin (e+f x)^2+a}}dx\right )-\frac {b \sin (e+f x) \cos (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}\)

\(\Big \downarrow \) 3657

\(\displaystyle \frac {1}{3} \left (\frac {2 (2 a+b) \sqrt {a+b \sin ^2(e+f x)} \int \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}dx}{\sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}-a (a+b) \int \frac {1}{\sqrt {b \sin (e+f x)^2+a}}dx\right )-\frac {b \sin (e+f x) \cos (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\frac {2 (2 a+b) \sqrt {a+b \sin ^2(e+f x)} \int \sqrt {\frac {b \sin (e+f x)^2}{a}+1}dx}{\sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}-a (a+b) \int \frac {1}{\sqrt {b \sin (e+f x)^2+a}}dx\right )-\frac {b \sin (e+f x) \cos (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}\)

\(\Big \downarrow \) 3656

\(\displaystyle \frac {1}{3} \left (\frac {2 (2 a+b) \sqrt {a+b \sin ^2(e+f x)} E\left (e+f x\left |-\frac {b}{a}\right .\right )}{f \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}-a (a+b) \int \frac {1}{\sqrt {b \sin (e+f x)^2+a}}dx\right )-\frac {b \sin (e+f x) \cos (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}\)

\(\Big \downarrow \) 3662

\(\displaystyle \frac {1}{3} \left (\frac {2 (2 a+b) \sqrt {a+b \sin ^2(e+f x)} E\left (e+f x\left |-\frac {b}{a}\right .\right )}{f \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}-\frac {a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \int \frac {1}{\sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}dx}{\sqrt {a+b \sin ^2(e+f x)}}\right )-\frac {b \sin (e+f x) \cos (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\frac {2 (2 a+b) \sqrt {a+b \sin ^2(e+f x)} E\left (e+f x\left |-\frac {b}{a}\right .\right )}{f \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}-\frac {a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \int \frac {1}{\sqrt {\frac {b \sin (e+f x)^2}{a}+1}}dx}{\sqrt {a+b \sin ^2(e+f x)}}\right )-\frac {b \sin (e+f x) \cos (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}\)

\(\Big \downarrow \) 3661

\(\displaystyle \frac {1}{3} \left (\frac {2 (2 a+b) \sqrt {a+b \sin ^2(e+f x)} E\left (e+f x\left |-\frac {b}{a}\right .\right )}{f \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}-\frac {a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right )}{f \sqrt {a+b \sin ^2(e+f x)}}\right )-\frac {b \sin (e+f x) \cos (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}\)

input
Int[(a + b*Sin[e + f*x]^2)^(3/2),x]
 
output
-1/3*(b*Cos[e + f*x]*Sin[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/f + ((2*(2*a 
 + b)*EllipticE[e + f*x, -(b/a)]*Sqrt[a + b*Sin[e + f*x]^2])/(f*Sqrt[1 + ( 
b*Sin[e + f*x]^2)/a]) - (a*(a + b)*EllipticF[e + f*x, -(b/a)]*Sqrt[1 + (b* 
Sin[e + f*x]^2)/a])/(f*Sqrt[a + b*Sin[e + f*x]^2]))/3
 

3.2.40.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3651
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]^2)/Sqrt[(a_) + (b_.)*sin[(e_.) + 
 (f_.)*(x_)]^2], x_Symbol] :> Simp[B/b   Int[Sqrt[a + b*Sin[e + f*x]^2], x] 
, x] + Simp[(A*b - a*B)/b   Int[1/Sqrt[a + b*Sin[e + f*x]^2], x], x] /; Fre 
eQ[{a, b, e, f, A, B}, x]
 

rule 3656
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Simp[(Sqrt[a 
]/f)*EllipticE[e + f*x, -b/a], x] /; FreeQ[{a, b, e, f}, x] && GtQ[a, 0]
 

rule 3657
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Simp[Sqrt[a 
+ b*Sin[e + f*x]^2]/Sqrt[1 + b*(Sin[e + f*x]^2/a)]   Int[Sqrt[1 + (b*Sin[e 
+ f*x]^2)/a], x], x] /; FreeQ[{a, b, e, f}, x] &&  !GtQ[a, 0]
 

rule 3659
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Simp[(-b)*C 
os[e + f*x]*Sin[e + f*x]*((a + b*Sin[e + f*x]^2)^(p - 1)/(2*f*p)), x] + Sim 
p[1/(2*p)   Int[(a + b*Sin[e + f*x]^2)^(p - 2)*Simp[a*(b + 2*a*p) + b*(2*a 
+ b)*(2*p - 1)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[ 
a + b, 0] && GtQ[p, 1]
 

rule 3661
Int[1/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Simp[(1/(S 
qrt[a]*f))*EllipticF[e + f*x, -b/a], x] /; FreeQ[{a, b, e, f}, x] && GtQ[a, 
 0]
 

rule 3662
Int[1/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Simp[Sqrt[ 
1 + b*(Sin[e + f*x]^2/a)]/Sqrt[a + b*Sin[e + f*x]^2]   Int[1/Sqrt[1 + (b*Si 
n[e + f*x]^2)/a], x], x] /; FreeQ[{a, b, e, f}, x] &&  !GtQ[a, 0]
 
3.2.40.4 Maple [A] (verified)

Time = 2.39 (sec) , antiderivative size = 266, normalized size of antiderivative = 1.73

method result size
default \(\frac {-\frac {\sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{2}}{3}-\frac {a \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b}{3}+\frac {4 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{2}}{3}+\frac {2 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a b}{3}+\frac {b^{2} \left (\sin ^{5}\left (f x +e \right )\right )}{3}+\frac {a b \left (\sin ^{3}\left (f x +e \right )\right )}{3}-\frac {b^{2} \left (\sin ^{3}\left (f x +e \right )\right )}{3}-\frac {a b \sin \left (f x +e \right )}{3}}{\cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f}\) \(266\)

input
int((a+b*sin(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
(-1/3*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+ 
e),(-1/a*b)^(1/2))*a^2-1/3*a*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^( 
1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*b+4/3*(cos(f*x+e)^2)^(1/2)*((a+b 
*sin(f*x+e)^2)/a)^(1/2)*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*a^2+2/3*(cos( 
f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticE(sin(f*x+e),(-1/a*b) 
^(1/2))*a*b+1/3*b^2*sin(f*x+e)^5+1/3*a*b*sin(f*x+e)^3-1/3*b^2*sin(f*x+e)^3 
-1/3*a*b*sin(f*x+e))/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f
 
3.2.40.5 Fricas [F]

\[ \int \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \,d x } \]

input
integrate((a+b*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")
 
output
integral((-b*cos(f*x + e)^2 + a + b)^(3/2), x)
 
3.2.40.6 Sympy [F]

\[ \int \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=\int \left (a + b \sin ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}\, dx \]

input
integrate((a+b*sin(f*x+e)**2)**(3/2),x)
 
output
Integral((a + b*sin(e + f*x)**2)**(3/2), x)
 
3.2.40.7 Maxima [F]

\[ \int \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \,d x } \]

input
integrate((a+b*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")
 
output
integrate((b*sin(f*x + e)^2 + a)^(3/2), x)
 
3.2.40.8 Giac [F]

\[ \int \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \,d x } \]

input
integrate((a+b*sin(f*x+e)^2)^(3/2),x, algorithm="giac")
 
output
integrate((b*sin(f*x + e)^2 + a)^(3/2), x)
 
3.2.40.9 Mupad [F(-1)]

Timed out. \[ \int \left (a+b \sin ^2(e+f x)\right )^{3/2} \, dx=\int {\left (b\,{\sin \left (e+f\,x\right )}^2+a\right )}^{3/2} \,d x \]

input
int((a + b*sin(e + f*x)^2)^(3/2),x)
 
output
int((a + b*sin(e + f*x)^2)^(3/2), x)